Jeremy Schnittman

University of Maryland

June 22, 2006

collaborators:

Alessandra Buonanno (U. Maryland) Günter Sigl (IAP)

Latex-beamer template: John Fregeau (Northwestern)

- Astrophysical background and motivation
- Results
 - Description of model
 - Types of GW sources
 - Dependence on model parameters
 - Resolvability and Subtractability
- Applications/Implications for LISA

- For SMBH masses of $M \sim 10^6 - 10^9 M_{\odot}$, typical accretion disks can extend many parsecs and have masses comparable to M
- EM spectra should be dominated by IR-UV wavelengths, with non-thermal radio and X-ray emission from the jet and corona
- The outermost region of the disk is thought to be a torus of molecular gas

Results

credit: I Fukue

Star formation in the outer disk

- The outer regions of the disk/torus will be dominated by gas pressure and should be self-gravitating Shlosman & Begelman 1987
- Above the Toomre limit $(\Sigma \gtrsim \frac{c_s \Omega}{\pi G};$ Toomre 1964) the disk will be gravitationally unstable to collapse
- This may result in a complete fragmentation of the disk into massive stars Levin 2003, 2006
- Or isolated super-massive stars may form and subsequently clear gaps in the disk via gas accretion Goodman & Tan 2004
- The disk-embedded stars will then evolve to compact objects (COs) on the accretion time-scale as they migrate through the disk and eventually merge with the SMBH via gravitational radiation

Ueda et al. 2003

- $L_X = f_X f_{Edd} L_{Edd}(M)$
- The hard X-ray luminosity function is relatively well-determined out to $z \sim 3-4$
- X-rays suffer less extinction than IR/visible emission
- Provide good estimate of intrinsic luminosity

Each inspiral event is adiabatic and circular

The GW spectrum is characterized by a cut-off frequency determined by the mass and spin of the SMBH.

Model Parameters

Acknowledgements

$$\frac{d\rho_{\mathrm{gw}}(f)}{d\ln f} = \frac{\eta_{\mathrm{gw}}f_{\mathrm{co}}}{\eta_{\mathrm{em}}f_{X}} \int \left| \frac{dt}{dz} \right| \frac{dz}{1+z} \int_{L_{\min}}^{L_{\max}} dL_{X} \frac{dN(L_{X})}{d\ln L_{X}} \frac{1}{E_{\mathrm{gw}}} \frac{dE_{\mathrm{gw}}}{d\ln f} [f_{z}(M)]$$

parameter	min	max	preferred	description
$f_{ m co}$	0	1	0.01	fraction of accreted mass
				in COs
f_X	0	1	0.03	fraction of EM radiation
				in X-rays
$ extit{f}_{ m Edd}$	0	$\gtrsim 1$	0.1	fraction of Eddington lu-
				minosity/accretion rate
$\eta_{ m em}$	0	0.4	0.2	efficiency of converting
				gas to EM radiation
$\eta_{ m gw}$	0	0.4	0.2	efficiency of converting
				COs to GW radiation

The time-averaged GW signal is comparable to the LISA noise curve

Stochastic vs. chirp signals

Acknowledgements

- The duty cycle is an estimate of the number of sources around each frequency at any time
- When $D(f) \gtrsim 1$, the sources may be treated as stochastic
- Above a certain frequency, the GW signal will be more like an isolated chirp

Conclusions

We can subtract the chirp signals with large SNR

For a given M, m, distance, and SNR threshold, we calculate a cut-off frequency above which the inspiral signal can be subtracted, leaving behind an unresolvable stochastic background

Conclusions

Astrophysical considerations/caveats

Acknowledgements

- We have relatively little data on the low-luminosity and low-mass end of the distribution function
- Accretion and stellar evolution time scales may compete: main sequence stars would likely be tidally disrupted before merger
- ullet Still very large uncertainty in $f_{
 m co}$ and m
- Greater understanding will require detailed simulations of outer disk
- f_X and $f_{\rm Edd}$ most likely are functions of M and also evolve in time: "anti-hierarchical" evolution Marconi et al. 2004; Merloni 2004

Applications/Implications

Acknowledgements

 Event rates should be comparable to other stochastic EMRI signals, e.g. WD, NS captures Barack & Cutler 2004

Stochastic regime ($f \leq 1 \text{ mHz}$):

- LISA should be able to put interesting limits on a number of model parameters, in particular $f_{\rm co}/f_{\rm X}$
- If the stochastic background is high enough, it still may be subtractable; not like WD background

Chirp regime ($f \gtrsim 1 \text{ mHz}$):

- Individual events should be resolvable as EMRIs: can be used to measure SMBH spin and possibly test GR
- Could be new source of IMBH-SMBH binaries, with clear EM counterpart cf. Milosavljevic & Phinney 2005
- Should have high SNR even at large redshifts; individual events can be detected and subtracted